

As the NASA's Investment in Space Launch Technology, NGLT is:

Enabling NASA to Greatly Expand the Scientific and Human Exploration of Space

Enabling the U.S. to Regain Commercial Launch Vehicle Market Share and to Open New Markets

Supporting our Country's National Security Needs

Promoting a Healthy Aerospace Workforce

- Reinvigorating Aerospace Industry R&D
- Reenergizing Engineering & Science Education

..... As Only NASA Can

Boost and 2nd Stage Engines

Safe Reliable

High Leverage, Cross-Cutting Technologies for Any Future Launch System

Intelligent, Self Diagnosing & Correcting **Systems**

Space-Based Range Tracking System

Crew

Safety

"All Electric" **Subsystems**

All-Weather, **Durable Thermal Protection Systems**

Rapid Checkout and Launch Systems

Non-Toxic Auxiliary Propulsion

ELV Upgrades

New Reusable Launch Vehicles

Exploration

Cutting Edge Hypersonics Technologies for Future, Aircraft–like Operations

Long Life, High Temperature Structures and Materials

Mach 4 Turbine Engines

Highly Integrated Airframe Systems

Ultra High-Temp Leading Edges

Integrated Rockets

Ram / Scramjets

Propulsion
Systems

Safe Reliable

Enabling Near and Long Term Improvements in U.S. Launch

Space Shuttle

Expendable Launch Vehicles

OSP

OSP Crew Return

OSP Crew Transfer

Technology Program

Development

Operations

NGLT Program

Decision Point

1st Flight

Risk Reduction

Flight

Development

Near Term Options

- Shuttle Upgrades / Derived System
- New Rocket RLV (potentially with DoD)
- Heavy Lift Expendable Launch

Longer Term Options

- New Rocket RLV
- Hypersonic RLV
- Very Heavy Lift Launch

NGLT Partners

Enabling "Firsts" in U.S. Space Launch Technology

Booster Engine Prototype

Highly reliable hydrocarbon fueled rocket booster engine (1+ Million lb thrust) – 1st in 40 years High reliability, long life rocket turbopumps

Auxiliary Propulsion

Non-toxic propellants for orbital propulsion

Vehicle Research and Technology

Airframes capable of containing cryogenic propellants and reentering the Earth's atmosphere

Durable high temperature thermal protection systems

An intelligent, autonomous "all electric" launch system

Propulsion Research & Technology

Long life, lightweight high temperature materials, seals and components

X-43A and C

1st controlled flight of a vehicle powered by an engine with no rotating parts (scramjet) from Mach 5 - 7 and 10

Revolutionary Turbine Accelerator

Lightweight, long life jet engines capable of flight at 4 times the speed of sound

Rocket Based Combined Cycle

Engines capable of both airbreathing (scramjet) and rocket propulsion in one system

Measuring Our Progress

Booster Engine Prototype

Demonstrator turbopumps completed. Single injector testing complete.

Demonstration of long life combustion liner

40K preburner and thrust chamber assembly and turbine inducer testing.

Advanced valve demonstration

Complete prototype preliminary design and component and subsystem testing. Award of fabrication contract

Auxiliary Propulsion

Completed test firings of LOx/Ethanol rocket

Initiate peroxide testing and completion of testbed design

Complete the design of 2 competing engines

Propulsion R&T

Fabricated 5
competing ceramic matrix composite combustor panels

Demonstrate high temperature polymer and ceramic composite materials

2004

Award NRA. Test advanced panel in scramjet test article

Vehicle R&T

Demonstrated improved welding techniques and damage resistant thermal tile

Demonstration of durable acreage TPS, IVHM testbed and life testing on composite cryogenic tanks

Design of Mach 15 flowpath, test of advanced thermal seals, delivery of an "all electric" power/actuation testbed

Measuring Our Progress

2003

2004

X-43A

X-43C

Revolutionary Turbine Accelerator

Rocket Based Combined Cycle

Redesign completed

Concept Design and System Requirements Complete Awarded Mach 4 demonstrator engine contract to GE Aircraft Engines Awarded Contract to Aerojet,
Pratt and Whitney,
Rocketdyne Consortium.
System Requirements
Complete

2nd Flight - Mach 7

Award of Demonstrator and Launch Vehicle Contracts Complete Project
Readiness Review and
Definition of System
Requirements.

Complete concept design

3rd Flight - Mach 10

Complete Design of the Multimodule Flowpath Propulsion Demonstrator

Complete design of Mach 2.5 fan

Complete the preliminary design of the ground test engine

Safe Reliable Afford

..... Imagine What We Will Do in the Next Century of Flight